
Operating Systems (Fall/Winter 2018)

Synchronization Examples

Yajin Zhou (http://yajin.org)

Zhejiang University

Acknowledgement: some pages are based on the slides from Zhi Wang(fsu).

http://yajin.org

Review

• Why we need synchronization?

• Race condition, critical section

• Requirements: ME, Progress, Bounded waiting, Performance

• Locks: acquire, release

• implementation: test-and-set, compare-and-swap

• Semaphores: wait and signal, implementation

• Condition variables: wait, signal, broadcast

Classical Synchronization Problems

• Bounded-buffer problem

• Readers-writers problem

• Dining-philosophers problem

Bounded-Buffer Problem

• Two processes, the producer and the consumer share n buffers
• the producer generates data, puts it into the buffer
• the consumer consumes data by removing it from the buffer

• The problem is to make sure:
• the producer won’t try to add data into the buffer if its full
• the consumer won’t try to remove data from an empty buffer
• also call producer-consumer problem

• Solution:
• n buffers, each can hold one item
• semaphore mutex initialized to the value 1
• semaphore full initialized to the value 0
• semaphore empty initialized to the value N

Bounded-Buffer Problem

• The producer process:

do { 
 //produce an item

 …

 wait(empty);

 wait(mutex);

 //add the item to the buffer

 …

 signal(mutex);

 signal(full);

} while (TRUE)

Bounded Buffer Problem

• The consumer process:

do {

 wait(full);

 wait(mutex);

 //remove an item from buffer

 …

 signal(mutex);

 signal(empty);

 //consume the item

 …

} while (TRUE);

Readers-Writers Problem

• A data set is shared among a number of concurrent processes

• readers: only read the data set; they do not perform any updates

• writers: can both read and write

• The readers-writers problem:

• allow multiple readers to read at the same time (shared access)

• only one single writer can access the shared data (exclusive access)

• Solution:

• semaphore mutex initialized to 1

• semaphore wrt initialized to 1

• integer read_count initialized to 0

Readers-Writers Problem

• The writer process

do {

 wait(wrt);

 //write the shared data

 …

 signal(wrt);

} while (TRUE);

Readers-Writers Problem
• The structure of a reader process

do {
 wait(mutex);
 readcount++ ;
 if (readcount == 1)
 wait(wrt) ;
 signal(mutex)

 //reading data
 …
 wait(mutex) ;
 readcount--;
 if (readcount == 0)
 signal(wrt) ;
 signal(mutex) ;
} while(TRUE);

Readers-Writers Problem Variations

• Two variations of readers-writers problem (different priority
policy)

• no reader kept waiting unless writer is updating data

• once writer is ready, it performs write ASAP

• Which variation is implemented by the previous code example???

• Both variation may have starvation leading to even more
variations

• If writer is in CS and n readers are waiting, one is on wrt, and n-1
are on mutex

Dining-Philosophers Problem

• Philosophers spend their lives thinking and eating

• they sit in a round table, but don’t interact with each other

• They occasionally try to pick up 2 chopsticks (one at a time) to eat

• one chopstick between each adjacent two philosophers

• need both chopsticks to eat, then release both when done

• Dining-philosopher problem represents multi-resource synchronization

• Solution (assuming 5 philosophers):

• semaphore chopstick[5] initialized to 1

Dining-Philosophers Problem

• Philosopher i (out of 5):
do {

 wait(chopstick[i]);

 wait(chopStick[(i+1)%5]);

 eat

 signal(chopstick[i]);

 signal(chopstick[(i+1)%5]);

 think

} while (TRUE);

• What is the problem with this algorithm?

• deadlock

Linux Synchronization

• Linux:

• prior to version 2.6, disables interrupts to implement short critical sections

• version 2.6 and later, fully preemptive

• Linux provides:

• semaphores

• on single-cpu system, spinlocks replaced by enabling/disabling kernel
preemption

• Spinlocks

• atomic integers

• reader-writer locks

Linux Synchronization

• Atomic variables

• atomic_t is the type for atomic integer

• Consider the variables

• atomic_t counter;

• int value;

• How?

POSIX Synchronization

• POSIX API provides

• mutex locks

• semaphores

• condition variable

• Widely used on UNIX, Linux, and macOS

POSIX Mutex Locks

• Creating and initializing the lock

• Acquiring and releasing the lock

POSIX Semaphores

• POSIX provides two versions – named and unnamed.

• Named semaphores can be used by unrelated processes, unnamed
cannot.

POSIX Named Semaphores

• Creating an initializing the semaphore:

• Another process can access the semaphore by referring to its name
SEM.

• Acquiring and releasing the semaphore:

POSIX Unnamed Semaphores

• Creating an initializing the semaphore:

• Acquiring and releasing the semaphore:

•

POSIX Condition Variables

• Since POSIX is typically used in C/C++ and these languages do not
provide a monitor, POSIX condition variables are associated with a
POSIX mutex lock to provide mutual exclusion: Creating and
initializing the condition variable:

POSIX Condition Variables

• Thread waiting for the condition a == b to become true:

• Thread signaling another thread waiting on the condition variable:

•

release lock when wait
acquire lock when being signaled

Dining-Philosophers Problem in Practice

0

1

2

3

4

0

12

3

4

http://web.eecs.utk.edu/~mbeck/classes/cs560/560/notes/Dphil/lecture.html

Solution 1: do nothing

P2 and p3 cannot
eat at the same time!

Solution 2: A mutex for each chopstick

Solution 2: A mutex for each chopstick

Could be deadlock, but …

Solution 3: Show how deadlock occurs

Solution 4: An asymmetrical solution

• only odd philosophers start left-hand first, and even philosophers
start right-hand first. This does not deadlock.

