Operating Systems (Fall/Winter 2018)

Synchronization Examples

Yajin Zhou (http://yajin.orqg)

Zhejiang University

Acknowledgement: some pages are based on the slides from Zhi Wang(fsu).

http://yajin.org

Review

Why we need synchronization”?
Race condition, critical section
Requirements: ME, Progress, Bounded waiting, Performance
Locks: acquire, release
implementation: test-and-set, compare-and-swap
- Semaphores: wait and signal, implementation

- Condition variables: walit, signal, broadcast

Classical Synchronization Problems

Bounded-buffer problem
Readers-writers problem

Dining-philosophers problem

Bounded-Buffer Problem

- Two processes, the producer and the consumer share n buffers
- the producer generates data, puts it into the buffer
- the consumer consumes data by removing it from the buffer
- The problem is to make sure:
- the producer won’t try to add data into the buffer if its full
- the consumer won’t try to remove data from an empty buffer
- also call producer-consumer problem
- Solution:
- N buffers, each can hold one item
- semaphore mutex initialized to the value 1
- semaphore full initialized to the value 0

- semaphore empty initialized to the value N

Bounded-Buffer Problem

-+ The producer process:

do {
//produce an item

wait (empty);
wait (mutex);

//add the item to the buffer

signal(mutex);
signal(full);
} while (TRUE)

Sounded Buffer Problem

- The consumer process:
do {
wait (full);
wait(mutex);

//remove an item from buffer

signal(mutex);
signal(empty);

//consume the item

} while (TRUE);

Readers-Writers Problem

- A data set is shared among a number of concurrent processes

- readers: only read the data set; they do not perform any updates

- writers: can both read and write
- The readers-writers problem:

- allow multiple readers to read at the same time (shared access)

- only one single writer can access the shared data (exclusive access)
- Solution:

- semaphore mutex initialized to 1

- semaphore wrt initialized to 1

- Integer read_count initialized to O

Readers-Writers Problem

-+ The writer process
do {
wait(wrt);

//write the shared data

signal(wrt);

} while (TRUE);

Readers-Writers Problem

- The structure of a reader process
do {
wait (mutex);
readcount++ ;
if (readcount == 1)
wait(wrt) ;
signal(mutex)

//reading data

wait(mutex) ;
readcount—;
if (readcount == 0)
signal(wrt) ;
signal(mutex) ;
}y while(TRUE);

Readers-Writers Problem Variations

- Two variations of readers-writers problem (different priority
policy)

* Nno reader kept waiting unless writer is updating data
*once writer IS ready, it performs write ASAP
- Which variation is implemented by the previous code example???

Both variation may have starvation leading to even more
variations

If writer is in CS and n readers are waiting, one is on wrt, and n-1
are on mutex

DiniNng-Philosophers Problem

- Philosophers spend their lives thinking and eating

- they sit in a round table, but don’t interact with each other
- They occasionally try to pick up 2 chopsticks (one at a time) to eat

*one chopstick between each adjacent two philosophers

- need both chopsticks to eat, then release both when done

- Dining-philosopher problem represents multi-resource synchronization
- Solution (assuming 5 philosophers):

- semaphore chopstick[5] initialized to 1

DiniNng-Philosophers Problem

Philosopher i (out of 5):
do {

wait(chopstick[il]);
wait(chopStick[(i+1)%51);
eat
signal(chopstick[i]);
signal(chopstick[(i+1)%5]);
think

} while (TRUE);
What is the problem with this algorithm??
deadlock

Linux Synchronization

- Linux:
- prior to version 2.6, disables interrupts to implement short critical sections
- version 2.6 and later, fully preemptive

- Linux provides:
- semaphores

- on single-cpu system, spinlocks replaced by enabling/disabling kernel
preemption

- Spinlocks
- atomic integers

- reader-writer locks

Linux Synchronization

Atomic variables

- atomic_t is the type for atomic integer

Consider the variables

- atomic_t counter:

- Int value;

How?

Atomic Operation Effect

atomic_set (&counter,5) ; counter = 5
atomic_add(10,&counter) ; counter = counter + 10
atomic_sub(4,&counter) ; counter = counter - 4
atomic_inc(&counter) ; counter = counter + 1
value = atomic.read(&counter); | value = 12

static inline int fetch and add(int* variable, int value)
{

asm__ volatile("lock; xaddl %0, %1"

: "+r" (value), "+m" (*variable) // input+output

: // No input-only

: "memory"

);

return value;

POSIX Synchronization

POSIX API provides
mutex locks
semaphores

condition variable

Widely used on UNIX, Linux, and macOS

POSIX Mutex Locks

- Creating and Initializing the lock

#include <pthread.h>
pthread mutex t mutex;

/* create and initialize the mutex lock */
pthread mutex_ init(&mutex,NULL) ;

-+ Acquiring and releasing the lock

/* acquire the mutex lock */
pthread mutex lock (&mutex) ;

/* critical section */

/* release the mutex lock */
pthread mutex unlock (&mutex) ;

POSIX Semaphores

POSIX provides two versions — named and unnamed.

Named semaphores can be used by unrelated processes, unnamed
cannot.

POSIX Named Semaphores

Creating an initializing the semaphore:

#include <semaphore.h>
sem.t *sem;

/* Create the semaphore and initialize it to 1 */
sem = sem._open("SEM", O0_CREAT, 0666, 1);

Another process can access the semaphore by referring to its name
SEM.

Acquiring and releasing the semaphore:

/* acquire the semaphore */
sem wait(sem) ;

/* critical section */

/* release the semaphore */
sem_post(sem) ;

POSIX Unnamed Semaphores

Creating an initializing the semaphore:

#include <semaphore.h>
sem.t sem;

/* Create the semaphore and initialize it to 1 */
sem_init(&sem, 0, 1);

Acquiring and releasing the semaphore:

/* acquire the semaphore */
sem_wait (&sem) ;

/* critical section */

/* release the semaphore */
sem_post (&sem) ;

POSIX Condition Variables

Since POSIX is typically used in C/C++ and these languages do not
porovide a monitor, POSIX condition variables are associated with a
POSIX mutex lock to provide mutual exclusion: Creating and
initializing the condition variable:

pthread mutex t mutex;
pthread cond t cond var;

pthread mutex_init (&mutex,NULL) ;
pthread cond init(&cond var,NULL) ;

POSIX Condition Variables

Thread waiting for the condition a == b to become true:

pthread mutex_lock(&mutex) ;
while (a != b) :
pthread cond wait(&cond var, &mutex); release lock when wait

acquire lock when being signaled
pthread mutex unlock(&mutex) ;

Thread signaling another thread waiting on the condition variable:

pthread mutex.lock(&mutex) ;

a = b;

pthread cond signal (&cond var) ;
pthread mutex unlock(&mutex) ;

DiNING-

Philosophers

Problem In Practice

http://web.eecs.utk.edu/~mbeck/classes/cs560/560/notes

/Dphil/lecture.htm

void xphilosopher(void *v)

{
Phil_struct *ps;

int st:
InE

ps = (Phil_struct %) v;

while(1) {

/* First the philosopher thinks for a random number of seconds */

/* Now, the philosopher wakes up and wants to eat. He calls pickup
to pick up the chopsticks x/

/* When pickup returns, the philosopher can eat for a random number of
seconds x/

/* Finally, the philosopher is done eating, and calls putdown to
put down the chopsticks */

putdown(ps)
}

void pickup(Phil_struct *ps)

{
}

void putdown(Phil_struct *ps)

{

}

Solution 1: do nothing

return;

return;

ol o OO NONO)

2 seconds

Philosopher 0 thinking for

Total blocktime: 0] 0 0 0 0 0
Philosopher 4 thinking for 2 seconds

Philosopher 3 thinking for 1 second

Philosopher 1 thinking for 2 seconds

Philosopher 2 1 second

1 Philosopher
1 Philosopher

1 Philosopher

2
2
2
2
2
2
2
3
3
3
3
3
3
5
3

P2 and p3 cannot
eat at the same time!

Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher
Philosopher

AR OONNWWNNOGOGO = = A D

thinking for

eating for 2 seconds
no longer thinking --

g PLCKUp
eating for 1 second
no longer thinking -- calling pickup()
eating for 2 seconds
no longer thinking -- calling pickup()
eating for 1 second

no longer eating -- calling putdown()
thinking for 1 second
no longer eating -- calling putdown()

thinking for 1 second
no longer thinking -- calling pickup()
eating for 2 seconds

no longer eating -- calling putdown()
thinking for 2 seconds
no longer eating -- calling putdown()

thinking for 2 seconds

Solution 2: A mutex for each chopstick

void pickup(Phil_struct *ps)
{

Sticks *pp;

int i

int phil_count;

pp = (Sticks *) ps->v;
phil_count = pp->phil_count;

pthread_mutex_lock(pp->lock[ps->id]); /* lock up left stick */
pthread_mutex_lock(pp->lock[(ps->id+1)%phil_count]); /* lock up right stick */

void putdown(Phil_struct *ps)
{

Sticks *pp;

e S

int phil_count;

pp = (Sticks *) ps->v;
phil_count = pp->phil_count;

pthread_mutex_unlock(pp->lock[(ps->id+1)%phil_count]); /* unlock right stick */
pthread_mutex_unlock(pp->lock[ps->id]); /* unlock left stick */

Solution 2: A mutex for each chopstick

0 Total blocktime: 0 : 0 0 0 0

0 Philosopher O thinking for 2 seconds

0 Philosopher 1 thinking for 2 seconds

O Philosopher 2 thinking for 1 second

0 Philosopher 3 thinking for 2 seconds

O Philosopher 4 thinking for 1 second

1 Philosopher 2 no longer thinking -- calling pickup()

eating for 2 seconds
1 Philosopher 4 no longer thinking -- calling pickup()
1 phi] | | . : | !
2 Philosopher 0 no longer thinking -- calling pickup()
i hinking -- calling pickup()
2 Philosopher 3 no longer thinking -- calling pickup()
2 Philosopher 4 no longer eating -- calling putdown()
2 Philosopher 4 thinking for 1 second
3 Philosopher 2 no longer eating -- calling putdown()
3 Philosopher 2 thinking for 2 seconds
3 Philosopher 1 eating for 2 seconds
Philosopher 3 eating for 2 seconds
3 Philosopher 4 no longer thinking -- calling pickup()
5 Philosopher 3 no longer eating -- calling putdown()
5 Philosopher 3 thinking for 1 second
5 Philosopher 1 no longer eating -- calling putdown()
5 Philosopher 1 thinking for 1 second

Could be deadlock, but ...

Solution 3: Show how deadlock occurs

void pickup(Phil_struct *ps)

{

Sticks *pp;

int phil count;

pp = (Sticks *) ps->v;

phil count = pp->phil count;

pthread mutex lock(pp->lock[ps->id]); /* lock up left stick */

sleep(3);

pthread mutex lock(pp->lock[(ps->id+1)%phil count]); /* lock up right stick */
}

second
seconds
second
seconds
second

Philosopher O thinking for
Philosopher 2 thinking for
Philosopher 3 thinking for
Philosopher 4 thinking for
Philosopher 1 thinking for

=0 o) =0 (98] =0

Philosopher 3 no longer thinking -- calling pickup()
Philosopher 1 no longer thinking -- calling pickup()
Philosopher 0 no longer thinking -- calling pickup()
Philosopher 4 no longer thinking -- calling pickup()
Philosopher 2 no longer thinking -- calling pickup()
Total blocktime: 42 : 9 9 7 9 8

0
0
0
0
0
O Total blocktime: 0 : 0 0 0 0 0
;
1
1
2
3
0

Solution 4: An asymmetrical solution

- only odd philosophers start left-hand first, and even philosophers
start right-hand first. This does not deadlock.

void pickup(Phil_struct *ps)

{
Sticks *pp;

int phil count;

pp = (Sticks *) ps->v;
phil count = pp->phil count;

if (ps->id % 2 == 1) {

pthread mutex lock(pp->lock[ps->id]); /* lock up left stick */
pthread mutex_ lock(pp->lock[(ps->id+1)%phil count]); /* lock right stick */
} else {
pthread mutex_lock(pp->lock[(ps->id+1)%phil count]); /* lock right stick */
pthread mutex lock(pp->lock[ps->id]); /* lock up left stick */
}
}
void putdown(Phil struct *ps)
{
Sticks *pp;
int 1z

int phil count;

pp = (Sticks *) ps->v;
phil count = pp->phil count;

if (ps->id % 2 == 1) {
pthread mutex unlock(pp->lock[(ps->id+1)%phil count]); /* unlock right stick */
pthread mutex unlock(pp->lock[ps->id]); /* unlock left stick */
} else {
pthread mutex unlock(pp->lock[ps->id]); /* unlock left stick */
pthread mutex unlock(pp->lock[(ps->id+1)%phil count]); /* unlock right stick */

